

EEVC WG12 Rear Impact Biofidelity Evaluation Programme

Presented by David Hynd

Chairman, EEVC WG20

8th November, 2007

EEVC WG12

Slide 1

Introduction

- EEVC WG20 formed in 2003 to develop test procedures for rear impacts
 - Prime focus on neck injury reduction
- EEVC WG12 to recommend dummies, injury criteria and injury risk functions for WG20 test procedures
 - Based on biomechanical evidence

EEVC WG12 - Dummy Issues

WG12 will make recommendations on

- Selection of a dummy
 - With appropriate biofidelity in low-speed rear impact test conditions
- Injury criteria
 - With a biomechanical basis
- Injury risk functions
 - With a biomechanical basis

European Enhanced Vehicle-safety Committee

EEVC WG12 Biofidelity Evaluation

- Several dummies used in or proposed for low-speed rear impact test procedures
 - BioRID II, RID^{3D}, Hybrid III
 - Most have been evaluated in certain test conditions, but...
 - ... No consistent evaluation of the latest versions of each dummy across a range of test conditions
- WG12 have selected a range of biofidelity test conditions to
 - Evaluate the BioRID II, RID^{3D} and Hybrid III dummies
 - BioRID II and RID^{3D} included as purpose-designed rear impact dummies
 - Hybrid III included as proposed in rear impact GTR

European Enhanced Vehicle-safety Committee

Biofidelity Test Conditions

- Rear impact biofidelity requirements chosen, based on
 - The availability of the full data set
 - Quality of the test set-up and instrumentation
 - Reproducibility
 - Relevance of the test conditions, loading condition and velocity change
 - Distribution of subject anthropometry, gender and age
 - The number of tests and test subjects
- Biofidelity requirements
 - 4 based on volunteer data
 - 1 based on PMHS data

Biofidelity Test Conditions

8th November, 2007

Biofidelity Test Conditions

GDV/Allianz volunteer tests

Biofidelity Requirements

- Most relevant criteria prioritised
 - E.g. head angle, T1 angle, head CoG displacement...
- New target corridors developed using a standardised method
 - EEVC WG9 method
 - Mean ± 1 std dev
 - Straight line approximation for tabulation

LAB - head angle wrt T1 co-ordinate system

Biofidelity Analysis

Subjective analysis

- Performance with respect to target corridors
- Influence of seat type and relevance to real-world seat testing

Objective analysis

- CORA analysis goodness of fit of each dummy response to each mean PMHS or volunteer response
 - Algorithm developed by PDB
 - Score 1 if entirely within inner corridor (mean human ±1 std dev)
 - Score 0 if entirely outside outer corridor (mean ±2 std dev)
 - Linear aggregation between these limits

Some typical results...

LAB test results - head CoG x-axis displacement w.r.t. the sled - PMHS, no head restraint

8th November, 2007

Some typical results...

JARI test results - head rotation w.r.t. T1 - volunteer, no head restraint

8th November, 2007

Some typical results...

Chalmers/AZT test - T1 angle w.r.t. the sled

Some typical results...

Chalmers/AZT test - Head rotation w.r.t. the sled

8th November, 2007

European Enhanced Vehicle-safety Committee

Biofidelity Results

Biofidelity - Hybrid III

- Head motion w.r.t. T1 not biofidelic
- Head rotation good in some seats, poor in others biofidelity seat dependent
- T1 rotation generally not biofidelic
- Head acceleration poor
- Seat back interaction least humanlike
- Head restraint interaction least humanlike contact force too low

- Biofidelity RID^{3D}
 - Biofidelity better at higher test severity
 - Not as able to accommodate different seat structures as BioRID and seat back interaction not as good as BioRID
 - Head restraint interaction comparable to BioRID II

Biofidelity - BioRID II

- Best overall biofidelity, although z displacements not good (nor for Hybrid III nor RID^{3D)}
- Head restraint interaction comparable to RID^{3D}
- Seat back interaction most humanlike

Objective CORA analysis

Parameter	RID ^{3D}	Hybrid III	BioRID II
T1 angle w.r.t. the sled	0.55	0.38	0.77
T1 x-axis displacement	0.53	0.50	0.47
T1 x-axis acceleration	0.56	0.48	0.60
Head rotation w.r.t. T1	0.45	0.28	0.59
Head C of G x-axis displacement w.r.t. T1	0.49	0.50	0.60
Head rotation w.r.t. the sled	0.49	0.29	0.62
Head C of G x-axis displacement w.r.t. the sled	0.62	0.43	0.46
Overall	0.53	0.41	0.59

Objective CORA analysis

Parameter	RID ^{3D}	Hybrid III	BioRID II
T1 angle w.r.t. the sled	0.55	0.38	0.77
T1 x-axis displacement	0.53	0.50	0.47
T1 x-axis acceleration	0.56	0.48	0.60
Head rotation w.r.t. T1	0.45	0.28	0.59
Head C of G x-axis displacement w.r.t. T1	0.49	0.50	0.60
Head rotation w.r.t. the sled	0.49	0.29	0.62
Head C of G x-axis displacement w.r.t. the sled	0.62	0.43	0.46
Overall	0.53	0.41	0.59

Objective CORA analysis

Parameter	RID ^{3D}	Hybrid III	BioRID II
T1 angle w.r.t. the sled	0.55	0.38	0.77
T1 x-axis displacement	0.53	0.50	0.47
T1 x-axis acceleration	0.56	0.48	0.60
Head rotation w.r.t. T1	0.45	0.28	0.59
Head C of G x-axis displacement w.r.t. T1	0.49	0.50	0.60
Head rotation w.r.t. the sled	0.49	0.29	0.62
Head C of G x-axis displacement w.r.t. the sled	0.62	0.43	0.46
Overall	0.53	0.41	0.59

European Enhanced Vehicle-safety Committee

Conclusions

- Hybrid III, RID^{3D} and BioRID II successfully evaluated in five biofidelity test conditions
- Hybrid III had insufficient biofidelity to be considered further as a test tool for low-speed rear impact
- For many parameters, RID^{3D} and BioRID II were similarly biofidelic wrt target corridors
 - Subjectively, BioRID slightly better
 - Objectively (CORA analysis) BioRID scored higher (0.59) than RID^{3D} (0.53) - average of seven parameters from five test conditions
- BioRID showed better seat back and head restraint interaction

Conclusions

- Overall, recommend that based on the currently available biofidelity data, BioRID II is the most suitable dummy for use in a low-speed rear impact test procedure
 - Scope for improvement of T1 vertical motion
- Repeatability and reproducibility evaluation underway
 - Testing complete
 - Analysis available soon

End of Presentation

Presented by David Hynd

Chairman, EEVC WG20

www.eevc.org

8th November, 2007