5-6 Sep. 2005 1st Flex-TEG MT OICA office, Paris

General Information for the Flexible Pedestrian Legform Impactor - type G -(Flex-G)

Atsuhiro Konosu Japan Automobile Research Institute (JARI)

BACKGROUND

- In 2004, we developed a Flexible Pedestrian Legform Impactor ver. 2004 (Flex-PLI 2004) and loaned the Impactor to several organizations (NHTSA, JAMA member, J-MLIT).
- After the loan activities, we obtained several comments for the impactor improvement.
- In 2005, we developed a Flex-G which is developed to improve several parts of the Flex-PLI 2004.
- This presentation introduce the Flex-G specifications.

Structure

Basic structure

Specifications

Length, C.G. location, and Mass

Length, C.G. location, and Mass	50th percentile of American Male*	Flex-G
a) Thigh length (mm)	428	433
b) Leg length (mm)	493	495
c) C.G. location of thigh (mm) **	218	213
d) C.G. location of leg (mm) **	233	225
e) Total leg form impactor mass (kg)	13.4	13.9
f) Thigh mass (kg)	8.6	8.6
g) Leg mass (kg)	4.8	5.3

* Robbins, D.H. ' Anthropometry of Motor Vehicle Occupants, Volume 2' NHTSA Contract DTNH22-80-C-07502 Pub. 1985.

** from the knee joint center

Comparable to the 50th percentile of American Male

Long bones outer shape

slightly different shape

Long bones outer shape (cont.)

Flex-G

Frontal view

Side view

Back view

Long bones

outer shape (cont.)

Reason: To install bending stopper cables into the long bone parts (prevents to apply large bending onto the long bone parts)

hole for bending stopper cables

Initial -> Free for bending (does not generate any tensions) After a certain bending level-> Work to prevent bending

Long bones

screw setting

Reason: Easy maintenance (need not to check the screw torque after the each test)

just tight enough

just keeping position of spacers

Long bones cross-sectional shape of bone core

Flex-PLI 2004

Reason: To improve durability of long bones

Leg

Long bones biofidelity of thigh

support length (PMHS test: 404.1 mm)

More appropriate support length

Long bones

biofidelity of leg

support length (PMHS test: 334.4 mm)

More appropriate support length

Knee joint surface of condyle

Knee joint biofidelity

Flex-PLI 2004

Test Type: Knee-3PB-396-R50 PMHS corridor - upper * Moment is calculated by support force and support length. PMHS corridor - avg. PMHS corridor - lower Flex-PLI (Knee) Flex-PLI 2004 (n=3) Bending Moment (Nm) 300 500 Corridor_U Corridor L Moment* (Nm) 000 bottoming Inertia effect -2 Angle (deg.)

Bending Angle (deg.)

Much closer to the PMHS response corridor

Flex-G

Flesh number of sheets

Flesh number of sheets (cont.)

Side view

Reason: To obtain comparable thigh and leg response of the PMHS ones.

Measurement

Long bones measurement items and positions

Long bones strain gage cables

Flex-PLI 2004

Reasons: 1) for better measurement

2) to increase durability of cables

Certification test

Assembly Dynamic Certification Test (initial setting)

Assembly Dynamic Certification Test (impact face)

Assembly Dynamic Certification Test (example at BASt/BGS)

Assembly Dynamic Certification Test Procedure (example at BASt/BGS)

Step 1) set zero level for sensors Step 2) attach rubber and neoprene at the impact face

Step 3) set the impactor to the 15 degree upward from horizontal level and release

Test flow 1

Test flow 2

*photo is for Flex-PLI 2004

Car test

Equipment pushing surface

CONCLUSIONS

- Flex-G is developed with several modifications onto the Flex-PLI 2004.
- We are very appreciate to evaluate the Flex-G by many organizations/users, and to obtain precious comments for the Flex-G improvement.

Thank you for your attention.