European Enhanced Vehicle-safety Committee

EEVC WG20 and WG12 Rear Impact Test Procedure Development Programme

Presented by David Hynd Chairman, EEVC WG20

12th December, 2006

Introduction

- EEVC WG20 formed in 2003 to develop test procedures for rear impacts
 - Prime focus on neck injury reduction
- EEVC WG12 to recommend dummies, injury criteria and injury risk functions for WG20 test procedures
 - Based on biomechanical evidence

European Enhanced Vehicle-safety Committee

EEVC WG20 - Test Procedures

Three WG20 test procedures under development

- Static test of head restraint geometry
 - A robust test procedure with geometric requirement can ensure head restraint provision is adequate for those occupants taller than the 50th percentile male
- Dynamic test of head restraint geometry
 - As an alternative to the static test of geometry
- Dynamic, injury risk assessment test procedure
 - To encourage more advanced and effective solutions than just good geometry

EEVC WG12 - Dummy Issues

WG12 will make recommendations on

- Selection of a dummy
 - With appropriate biofidelity in low-speed rear impact test conditions
- Injury criteria
 - With a biomechanical basis
- Injury risk functions
 - With a biomechanical basis

State-of-the-art review

- Update of earlier WG12 review, focusing on
 - Accident data and insurance statistics
 - Biomechanics
 - Dummy development
 - Car and seat design
 - Test procedures
 - Finalised and on-going research programmes
- EEVC WG20 (2005). Updated State-of-the-Art Review on Whiplash Injury Prevention. WD80. European Enhanced Vehiclesafety Committee. March 2005. Available from <u>www.eevc.org</u>

12th December, 2006

State-of-the-art review

Key conclusions

- Whiplash Associated Disorder (WAD) symptoms are well documented, but the actual injury remains to be established
 - Several injury locations and injury mechanisms have been suggested
 - Further work is needed before a WAD risk assessment parameter (LNL, Nkm, T1rebound velocity, NIC, NDC, IV-NIC, etc.) can be finally established
 - The dynamic motion of the human head-neck system during a low-speed rear impact is known from volunteer test data
- Both mean and peak acceleration appear to be important crash severity parameters together with delta-v
- Women have about twice the injury risk compared to men
- Energy absorbing seats, active head restraints and good head restraint geometry all seem to be beneficial, based on claims evidence
- The BioRID II and the RID2/RID3D are the best suited dummies for rear impact whiplash prevention testing

Static test of head restraint geometry

- Developed draft test procedure based on RCAR procedure with 3-D H machine and HRMD
 - Test procedure evaluated
 - Repeatability
 - Reproducibility...

12th December, 2006

Geometric test procedure evaluation programme

Three seats

- Volvo S40, Ford Focus Mk1, Citroen C3
- Three test tools
 - AA1, AA2, SAE
- Four test teams
 - BASt, IDIADA, Thatcham, TRL

12th December, 2006

European Enhanced Vehicle-safety Committee

WG20 Progress

Geometric test procedure evaluation - conclusions

- Experienced testers slightly better repeatability than inexperienced
- Reduce torso angle requirement
 - From 25° ± 1° to 25° ± 0.5°
- Improve certification of 3-D H machine
 - To improve reproducibility of machine itself
- Seat most important source of test variability
 - Possible to have good repeatability and wide range of comfort adjustments
- With reduction of torso angle requirement and improved certification of 3-D H machine
 - Repeatability and reproducibility improved
 - Need to demonstrate sufficient for regulatory use

Geometric test procedure evaluation - issues outstanding

• WG20 working on some outstanding issues, e.g.

- Temperature and humidity requirements
- Pre-conditioning of seat
- Selection of torso angle
- Accommodation of tilting front seats
- Testing of height and tilt locking devices

Geometric test procedure evaluation

Selection of height and backset limits

- Not available yet
- Will come from cost-benefit study
- Due June 2007

Geometric test procedure evaluation - other options

- WG is evaluating proposals at GRSP Informal Group
 on Head Restraints
 - UTAC simplified tool for backset measurement

Geometric test procedure evaluation - other options

12th December, 2006

Geometric test procedure evaluation - other options

- WG20 is evaluating proposals at GRSP Informal Group on Head Restraints
 - UTAC simplified tool for backset measurement
 - OICA and JASIC methods using modified Reg17 equipment

Geometric test procedure evaluation - other options

12th December, 2006

Dynamic test of head restraint geometry

- Adopted as a new work item October 2006
 - Develop a test procedure that can be used to measure head restraint backset dynamically
 - Particularly beneficial for reactive head restraints
 - Less design restrictive

• Scope

- Biofidelic dummy to ensure correct head-neck movement and seat back interaction
- Dynamic equivalent of static test procedure
 - No additional cost-benefit
 - No assessment of injury risk
- Use info from dynamic injury assessment test procedure programme
 - Pulse, adjustment of head restraint, selection of dummy

Dynamic test of head restraint geometry

Progress

- Gathering data from upcoming dynamic rear impact tests for re-analysis
 - To allow initial investigation of the issue
 - To evaluate proposed methods for calculating backset (including from image analysis)
 - Analysis Q1, 2007

Dynamic, injury risk assessment test procedure

• Key tasks

- Selection of pulse or pulses
- Selection of scope, e.g.
 - Seat test
 - Seat and restraint system
 - Full vehicle buck
- Define adjustment of head restraint
- Draft test procedure due end June 2007
 - Evaluate with WG12-recommended dummy and injury criteria

Dummy selection

- Several dummies used in or proposed for low-speed rear impact test procedures
 - BioRID-2, RID^{3D}, Hybrid III
 - Most have been evaluated in certain test conditions, but...
 - ... No consistent evaluation of the latest versions across a range of test conditions
- WG12 have selected a range of biofidelity, repeatability and reproducibility test conditions
 - Evaluate the BioRID-2, RID^{3D} and Hybrid III dummies
 - BioRID-2 and RID^{3D} included as purpose-designed rear impact dummies
 - Hybrid III included as proposed in rear impact GTR

Dummy selection

- Rear impact biofidelity requirements chosen, based on
 - The availability of the full data set
 - Quality of the test set-up and instrumentation
 - Reproducibility
 - Relevance of the test conditions, loading condition and velocity change
 - Distribution of subject anthropometry, gender and age
 - The number of tests and test subjects
- Biofidelity requirements
 - 4 based on volunteer data
 - 1 based on PMHS data
 - See 19th ESV 2005 paper for details

Dummy selection

- New target corridors developed using a standardised method
 - EEVC WG9 method
- Dummy evaluation programme underway
 - BioRID-2, RID^{3D} and Hybrid III
 - Biofidelity, repeatability and reproducibility
 - Most tests completed, analysis due February 2007

Injury criteria

- Published criteria are being evaluated
 - Including proposed injury mechanism
 - Certain biomechanical basis not established for any criteria
 - Injury criteria being calculated from dummy evaluation tests to assess capability of dummies and as first check on criteria
 - No new criteria being developed by WG12

Injury risk functions

- Available injury risk functions have been documented
 - No further evaluation until biomechanical basis for criteria established

Dummy biofidelity

• Analysis due February 2007

Injury criteria

• Published criteria are being evaluated

Injury risk functions

 To be developed once biomechanical basis for criteria is established

End of Presentation

Presented by David Hynd Chairman, EEVC WG20

Tel: +44 1344 770310

Email: wg20chair@eevc.org

12th December, 2006