HR-7-13

FMVSS 202a Dynamic Evaluation of the Volvo WHIPS Seat

Ford Presentation to NHTSA

FMVSS 202a Alternative Dynamic Test

- . Examine field performance of Volvo WHIPS seats versus performance in NHTSA's dynamic tests.
- . Functional equivalency of the dynamic and static requirements.
- . Suggested modifications of the dynamic requirements

Volvo WHIPS Seat: Real-World Performance

- Comparing Volvo seats with WHIPS to the previous-generation Volvo seats (Jakobsson and Norin, IRCOBI 2004).
 - There was an 18% reduction for initial soft tissue neck injuries.
 - For soft tissue neck injuries lasting more than 1 year, there was a 36% reduction.
- IIHS reported a 49% reduction in neck injury claim rates with WHIPS compared to previous generation seats (IIHS status report, 10/2002).

Volvo WHIPS Seat: Public Ratings

IIHS/IIWPG (2005)

 All tested models rated "Good"
 \$40, \$60, \$80, \$200

 Folksam/SRA (2005)

 All tested models rated Green
 \$40, \$50, \$60, \$70, \$80, \$200

FMVSS 202a Alternative Dynamic Sled Test: Volvo S80

		Test 1	Test 2	Average	Requirement
Static Backset (mm)				13 (n=15)	55
Backs (mm)	set in Test	55	50	52.5	
	-Torso e (Deg)	15.9	16.6	16.3	12
C7/T [·] (Nm)	1 –My	50	41	45.5	

FMVSS 202a Alternative Dynamic Test Concerns

- The 12 degree head-torso rotation requirement may not be functionally equivalent to the static requirements.
 - Minimum height
 - Backset (Front outboard seating positions)
 - Gaps
 - Energy Absorption
 - Height Retention
 - Backset retention, displacement and strength
- The 12 degree head-torso rotation requirement may be design/technology restrictive.

NHTSA Risk of Injury Probability Curve: Basis

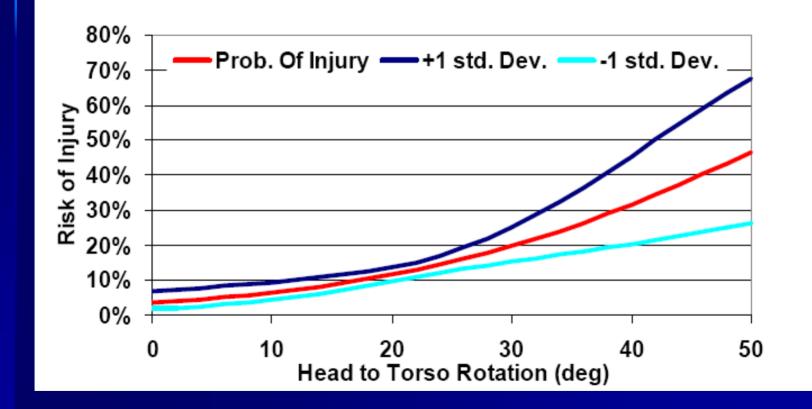
- Based on paired tests of Saab seats with and without the Self Aligning Head Restraint (SAHR)
 - The head-torso rotation was obtained via film analysis using "phantom" reference targets (Viano).
 - Not the method required by FMVSS 202a where instrumentation error is +/- 1.5 deg compared to film analysis (Voo et al., SAE 2003-01-0174).

Viano 2002, "Role of the Seat in Rear Crash Safety"

Film Analysis: "Phantom" Reference Targets

HR-7-13

• Viano, Role of the Seat in Rear Crash Safety, SAE 2002.


Dynamic Test Option: 12 Degree Injury Criterion

- Based on one type of seat: with SAHR(Saab 9-3) and without SAHR (Saab 9000)
 - At 16 km/hr ΔV (approximates Dynamic Test Alternative ΔV of 17.3 km/hr)
 - Two tests with Saab 9-3 (SAHR)
 - Two tests with Saab 9000 (w/o SAHR)

12 Degree injury criterion may not accurately represent other head restraints/ seats (including other active systems)

Ref: NHTSA 2004-19807-5

NHTSA Head to Torso Rotation Risk of Injury Curve

HR-7-13

Dynamic Test Proposal

- Increase the head-to-torso rotation limit to 20°
 - Approximately represents a 11% risk of whiplash injury (AIS 1) according to the NHTSA probability curve.
 - Significantly lower than the 18.8% injury risk level allowed for moderate head injuries (AIS 2) by the HIC requirement of 500.
 - Will be less design restrictive.