FMVSS No. 202 Final Rule Backset and Height Retention Testing

Justification for Load Values

2nd Head Restraint Informal Working Group Meeting April 11-13, 2005

Initial Seat Back Position for Retention Tests

Backset Retention Force Application

HR-2-8

2

Backset Retention Procedure in Final Rule

- Displaced torso reference achieved by 373 Nm moment through back pan.
- Seat back rigidly fixed.
- 37 Nm moment applied with head form, 65 mm below top of head restraint, to achieve reference position.
- 373 Nm moment applied.
 - For 800 mm head restraint, F x 0.735 m = 373 Nm
 - F = 507 N
 - 102 mm limit on displacement beyond torso reference line.
- Return to 37 Nm moment.
 - 13 mm limit on change from reference position to assure locks held.

Height Retention Force Application HR-2-8

Height Retention Procedure in Final Rule

- 50 N force applied to top of head restraint to achieve reference position.
 - 25 mm limit on displacement for 50 N force.
 - Required because some designs with frictional positioning will displace under this small force.
- 500 N force applied.
 - Load consistent with that applied during backset retention.
- Return to 50 N force.

5

13 mm limit on change from reference position to assure locks held.

Final Rule vs. Original Proposal

- NPRM (Notice of Proposed Rulemaking) Commenters concerned about stringency of test.
 - NPRM tested unfixed seat back.
- Performed limited testing on 5 seats. 1 seat had no locks. No paired data.
 - Fixed and unfixed seat backs
 - 50 N and 100 N initial reference load.
- Results.
 - 2 of 4 seats passed height retention @ 13 mm.
 - 3 of 4 passed backset retention @13 mm.
 - Only unfixed seats exceeded limit.
- Procedure altered to provide relief.
 - Displacement limit increased from 10 to 13 mm.
 - Seat back rigidly fixed.

Appropriateness of Force Level

- For both backset and height retention test the maximum applied load is ≈ 500 N.
- The rearward force applied in Backset retention test has been the same since 1968.
- Justification for height retention force in Final Rule.
 - It was reasonable to apply a similar level of force to height retention as was applied to backset retention.
 - Average upper neck shear forces in 50%ile male dummy in FMVSS No. 301 rear impacts was ≈ 350 N.

More Through Examination of Head Restraint Loading

- Looked at all previous rear impact testing where seat back rotation was known.
- Crash tests
 - FMVSS No. 301 Rear Impacts, Avg. $\Delta V = 26$ km/h
- Sled tests
 - Simulating FMVSS No. 301, $\Delta V \approx 30$ km/h.
 - FMVSS No. 202 Sled Tests, $\triangle V \approx 17.3$ km/h.
- Hybrid III Dummies
 - 5th %ile Female, 50th %ile Male, 95th %ile Male
- 1998 2004 Seats

Detailed Analysis of Head Restraint Loading

HR - 2 - 8

Load Cell

System

Coordinate

Detailed Analysis of Head Restraint Loading

- Equations in head coordinate system
- FHRx + Fx = mAx
- FHRz + Fz = mAz
 - $m \rightarrow head mass$
 - $A \rightarrow CG$ acceleration
 - FHR → Force on the head applied by the head restraint.
 - $\mathbf{Fx} \rightarrow \mathbf{Shear}$ force at the top of the neck
 - $Fz \rightarrow$ Tensile force at the top of the neck.
- FHRx = mAx Fx
- FHRz = mAz Fz

Detailed Analysis of Head Restraint Loading

- $\phi \rightarrow$ the angle of the head and seat back in the global coordinate system.
- θ = φs φh
- The transformation in the head coordinate system to the seat back coordinate systems.
- FHRxs = FHRx cosθ FHRz sinθ
- FHRzs = FHRx sinθ + FHRz cosθ

Maximum Rearward Force on Head Restraint

Maximum Downward Force on Head Restraint

Average Maximum Rearward Force on Head Restraint

15 15

Average Maximum Downward Force on Head Restraint

Test Video

- 1999 Cadillac Deville
- 50th %ile Male Dummy
- 800 mm height
- 50 mm backset
- FMVSS No. 301 sled test (≈ 30 Km/h ΔV)
- Peak FHRxs = 672 N
- Peak FHRzs = -842 N
- Resultant load = 1054 N @ -51°

1999 Cadillac Deville – 50th Male, 301 Speed

Test Video

- 1999 Sebring
- 95th %ile Male Dummy
- 800 mm height
- 50 mm backset
- FMVSS No. 301 sled test (≈ 30 Km/h ΔV)
- Peak FHRxs = 2676 N
- Peak FHRzs = -1816 N
- Resultant load = 2986 N @ -34°

1999 Sebring – 95th Male, 301 Speed

Test Video

- 1999 Toyota Camry
- 50th %ile Male Dummy
- 800 mm height
- 50 mm backset
- FMVSS No. 202 sled test (≈ 17 Km/h ΔV)
- Peak FHRxs = 575 N
- Peak FHRzs = -1006 N
- Resultant load = 1153 N @ -60°

1999 Camry – 50th Male, 202 Speed

Test Video

- 2000 Saab 9-3
- 95th %ile Male Dummy
- 800 mm height
- 50 mm backset
- FMVSS No. 202 sled test (≈ 17 Km/h ΔV)
- Peak FHRxs = 976 N
- Peak FHRzs = -704 N
- Resultant load = 1184 N @ -35°

2000 Saab 9-3, 95th Male, 202 speed

