Informal document No. GRRF-57-32
PROPOSED MOTORCYCLE BRAKES GTR - SUMMARY TABLE (57th GRRF, 31 January-4 February 2005, agenda item 2.)

LAYOUT		PROPOSED CONTENT IN SUMMARISED FORM	NOTES + OUTSTANDING ACTIONS
	3.1.4	3 wheelers (3-5) shall have: - a parking brake - or split service braking) which brakes all wheels OR - a service brake system that operates on all wheels (other than a split service brake system) and a secondary brake system that may be the parking brake.	Informal group to consider N American tricycles
	3.1.5	Where 2 separate service brake systems are installed, there may be a common brake provided failure in 1 system does not affect the performance of the other.	
	3.1.6	Master cylinders shall have separate reservoir for each system, separate covers, and fluid level shall be easily checked.	
	3.1.7	Vehicles equipped with split braking systems shall be fitted with a red warning lamp to signify hydraulic failure or low fluid level.	
	3.1.8	Vehicles with ABS shall be fitted with an amber warning lamp to signify electrical failures	
	3.1.9	Brake linings shall contain no asbestos.	
3.2 Function			
	3.2.1 Service brake	Shall progressively reduce speed of the vehicle, bring it to a halt, and keep it halted. Rider seated with both hands on steering.	
	$3.2 .2$ Secondary brake	Where fitted, shall progressively reduce the vehicle speed and halt it in the event of a service brake system failure - driver seated with 1 hand on the steering.	
	$\begin{aligned} & 3.2 .3 \\ & \text { Parking brake } \\ & \hline \end{aligned}$	Where fitted, must hold vehicle on prescribed slope with a separate control.	
3.3 Durability			
	3.3.1	Lining wear shall be taken account of automatically or manually.	
	3.3.2	Lining thickness shall be visible or camshaft rotation noted.	
	3.3.3	During tests, no lining detachment or fluid leakage.	
3.4 Dynamic performance results		These may be presented in 3 ways (as specified in respective test):	
	$\begin{aligned} & \hline \text { 3.4.1 } \\ & \text { MFDD } \end{aligned}$	Mean Fully Developed Deceleration OR	
	3.4.2 Stopping distance	Stopping distance - $\mathrm{S}=0.1 \mathrm{~V}+(\mathrm{X}) \mathrm{v}^{2} \mathrm{OR}$	

LAYOUT		PROPOSED CONTENT IN SUMMARISED FORM	NOTES + OUTSTANDING ACTIONS
	3.4.3 Continuous readout	Continuous readout of deceleration for Wet brake test and ABS surface transition.	
4. TEST CONDITIONS, PROCEDURES, AND PERFORMANCE REQUIREMENTS			For all relevant variables, e.g. speeds, forces etc. add a tolerance and correction factors within that range. USA \& Canada to provide proposal.
4.1 General			
	$\begin{aligned} & \text { 4.1.1: } \\ & \text { [Test surface] } \end{aligned}$	Test area to be clean, dry and level road surface $\leq 1 \%$. Test surface shall have a nominal peak friction coefficient of adhesion of 0.9. using ASTM E1136 standard reference tyre in accordance with ASTM Method E1337-90 OR coefficient of adhesion of ≥ 0.8 using vehicle test procedure based on ECE R78 Annex 4 ABS K test. For testing vehicles equipped with ABS, 2 surfaces (measured using ECE K test): - \quad High friction ≥ 0.8 - Low friction ≤ 0.45 For parking brake test, a clean, dry, solid surface of the specified slope. Maximum lane width of 2.5 m for 2 wheeled motorcycles; vehicle width plus 2.5 m for 2 wheeled motorcycles with sidecar or 3 wheeled motorcycles.	The informal group is still discussing how to specify the surface friction. The alternatives are: 1. specify a coefficient but no method 2. specify both the coefficient and method Need to review the issue of having two methods of determining surface friction. How will this affect compliance auditing / enforcement.
	4.1.2: Ambient temperature	$4^{\circ}-38^{\circ} \mathrm{C}$	To avoid frozen surface.
	4.1.3: Wind speed	Agreed - JAPAN SS 12-61 :- Not more than $5 \mathrm{~m} / \mathrm{s}$	
	4.1.4: Test speed	Vehicles to be tested at the specified speed or [0.8] Vmax, whichever is the lower.	Informal group to finalise
	$\begin{aligned} & \text { 4.1.5: } \\ & \text { Auto gearboxes } \end{aligned}$	These vehicles shall complete engine connected and disconnected tests and the gearbox shall be in "drive".	
	4.1.6: Vehicle position and wheel lock	All stops to be made without wheels deviating from the test lane and without wheel lockup (not applicable to ABS equipped vehicles $<10 \mathrm{~km} / \mathrm{h}$). Vehicles shall start in the middle of the lane	

LAYOUT		PROPOSED CONTENT IN SUMMARISED FORM		NOTES + OUTSTANDING ACTIONS
	4.1.7: Test sequence	TEST ORDER	SECTION	Add text to say that the heat fade always comes at the end
		1. Dry Stop - with single brake control activated 2. Dry Stop - with both brake controls activated 3. High Speed 4. Wet Brake 5. Heat Fade 6. If fitted: 6.1 Parking Brake 6.2 ABS 6.3 Partial failure test, for a split-brake system	$\begin{aligned} & 4.3 \\ & 4.4 \\ & 4.5 \\ & 4.6 \\ & 4.7 \\ & \\ & 4.8 \\ & 4.9 \\ & 4.10 \\ & \hline \end{aligned}$	
4.2 Preparation				
	4.2.1: Engine idle speed	Engine idle speed to be at manufacturers specification		
	4.2.2: Tyre pressures	Manufacturer specification		
	4.2.3: Control lever application point	Input force applied [50] mm from the outer end of the [lever].		Informal group to discuss
	4.2.4: Brake Temperatures	Also specified for each test in GTR text. At the beginning of each stop, the temperature measured inside the brake linings or on the braking path of the disc or drum, will be ? $\left[55-65^{\circ} \mathrm{C}\right.$ for single brake systems and below $100^{\circ} \mathrm{C}$ for CBS], Brake temperatures are measured with thermocouples, on the disc or drum, or on the drum shoe or disc pad.		Informal group to discuss: - IMMA data to show that a cold brake temperature of $0-100^{\circ} \mathrm{C}$ does not affect repeatability - USA data to show that there could be repeatability problems unless $55-100^{\circ} \mathrm{C}$ is used - IMMA to provide details on rubbing thermocouples, so that they can be considered as the only measurement method
	4.2.5: Brake burnishing	Include a requirement that the manufacturer will carry out the burnishing and show records to the test house on request. Procedure to be adopted by a government when doing conformity testing: - Vehicle unladen - Initial speed $50 \mathrm{~km} / \mathrm{h}$ or 0.8 Vmax , whichever is the lower - Reacceleration speed $5-10 \mathrm{~km} / \mathrm{h}$ - Decel CBS 3.5-4.0 m/s ${ }^{2}$ - Decel front separately $3.0-3.5 \mathrm{~m} / \mathrm{s}^{2}$ - Decel rear separately $1.5-2.0 \mathrm{~m} / \mathrm{s}^{2}$ - 100 stops per brake system - Engine disconnected - Initial brake temperature before each stop $<100^{\circ} \mathrm{C}$		

LAYOUT		PROPOSED CONTENT IN SUMMARISED FORM	NOTES + OUTSTANDING ACTIONS
	Vehicle mass	Specified for each test in GTR text Note: Fully laden $=$ max mass and loading according to manufacturer's specification. Unladen = rider and test equipment	Clarify definitions of laden and unladen. "See SR1"
4.3	Dry Stop Test- single brake control activated	Agreed the ECE tests: - Laden vehicle only but where CBS fitted, also tested unladen. - Engine disconnected - Initial speed $=40 \mathrm{~km} / \mathrm{h}$ for 3-1, 3-2 and $60 \mathrm{~km} / \mathrm{h}$ for 3-3, 3-4, 3-5 vehicles - Brake actuation force - Hand $\leq 200 \mathrm{~N}$. Foot $\leq 350 \mathrm{~N}$ for 3-1, 3-2, 3-3, 3-4. (500 N for $3-5$ vehicles) - 6 stops maximum - Separate tests for each control and CBS Requirements : Deceleration or equivalent distance based on $\mathrm{S}=0.1 \mathrm{~V}+(\mathrm{X}) \mathrm{V}^{2}$ Minimum deceleration : Front : $3-1=3.4 \mathrm{~m} / \mathrm{s}^{2} \quad 3-2=2.7 \mathrm{~m} / \mathrm{s}^{2} \quad 3-3=4.4 \mathrm{~m} / \mathrm{s}^{2} \quad 3-4=3.6 \mathrm{~m} / \mathrm{s}^{2}$ Rear : $3-1=2.7 \mathrm{~m} / \mathrm{s}^{2} \quad 3-2=2.7 \mathrm{~m} / \mathrm{s}^{2} \quad 3-3=2.9 \mathrm{~m} / \mathrm{s}^{2} \quad 3-4=3.6 \mathrm{~m} / \mathrm{s}^{2}$ CBS : $3-1,3-2=4.4 \mathrm{~m} / \mathrm{s}^{2} \quad 3-3=5.1 \mathrm{~m} / \mathrm{s}^{2} \quad 3-4=5.4 \mathrm{~m} / \mathrm{s}^{2} \quad 3-5=5 \mathrm{~m} / \mathrm{s}^{2}$ CBS secondary brake $=2.5 \mathrm{~m} / \mathrm{s}^{2}$ for all vehicle types.	Add performance requirement for split service (split service failure performance addressed in 4.10)
4.4	Dry Stop Test all service brake controls activated	Based on FMVSS 122 test. Summary: - Unladen vehicle test - Stops with engine disconnected - \quad Test speed $=100 \mathrm{~km} / \mathrm{h}$ or 0.8 V max whichever is lower. $(\operatorname{Min}=[45] \mathrm{km} / \mathrm{h})$ - Brake actuation force - Hand ≤ 245 N. Foot ≤ 400 N - 6 stops maximum - Stops performed with both brake systems activated at the same moment. or of the single brake control in the case of a service brake system that operates on all wheels. Requirements: Minimum deceleration $=\left[7.6 \mathrm{~m} / \mathrm{s}^{2}\right.$ or $\left.\mathrm{S} \leq 0.1 \mathrm{~V}+0.005 \mathrm{~V}^{2}\right]$ for all vehicle types.	IMMA/Italy to consider exempting low speed vehicles below a specified power/mass ratio. Informal group to revise the minimum test speed. In the interests of uniformity, IMMA to see if the brake actuation force values can be aligned with the forces used in test 4.3 above. Converting the FMVSS stopping distance requirement results in an unexpectedly high MFDD requirement of $7.6 \mathrm{~m} / \mathrm{s}^{2}$ To be discussed further in the informal group

LAYOUT	PROPOSED CONTENT IN SUMMARISED FORM	NOTES + OUTSTANDING ACTIONS
4.7 Heat Fade Test - Base line - Heating Procedure - Recovery	Agreed ECE REG 78 :- 3-3,3-4, and 3-5 vehicles only All with laden vehicle Separate test for each brake system If CBS fitted, test only CBS Perform a single Dry stop test as in 4.3 above and record control force. Perform 10 repeated stops as quickly as possible Speeds - Front + CBS $=100 \mathrm{~km} / \mathrm{h}$ or $70 \% \mathrm{v}$ max whichever is lower - Rear $=80 \mathrm{~km} / \mathrm{h}$ or $70 \% \mathrm{v}$ max whichever is lower Braking interval $=1000 \mathrm{~m}$ Engine connected with the highest gear engaged for 50\% stop, disconnected for remainder. - For the first stop, deceleration $=3 \mathrm{~m} / \mathrm{s}^{2}$ with constant control force and the same force for remainder - Repeat Baseline test ASAP or at least within 1 minute after completion of Fade test. Requirement : Single Recovery test with control force \leq baseline force, performance $\geq 60 \%$ of Baseline test performance (engine disconnected)	Informal group to revise the vehicle categories to which this requirement applies. Informal group to discuss how to define the control forces
OPTIONAL / IF FITTED		
4.8 Parking Brake	Agreed: ECE REG 78. Summary :- - Static test - Laden vehicle - 18% slope, up and down - control forces: hand $<400 \mathrm{~N}$; foot $<500 \mathrm{~N}$ Requirement: - Vehicle remains stationary on slope during a period of 5 minutes.	
4.9 ABS	Based on ECE REG 78. Summary :- - 3-1 $+3-3$ vehicles only - Tests on 2 road surfaces : ≥ 0.8, and ≤ 0.45 - Unladen vehicle only - \quad Initial speed $=$ typically 60 or $80 \mathrm{~km} / \mathrm{h}$ (depends on test) - Separate tests for each brake control and both controls together. - Stops on high and low friction surfaces. - Wheel lock checks for low to high and high to low surface transitions. Requirements: - If ABS failure, Dry Stop test performance (4.3) shall be maintained - Wheel must not lock on test surface (but acceptable if low speed and vehicle stable)	Informal group to finalise Adhesion utilisation test not included: - Difficult to perform - Reliant on rider skill - Not in Japan regs - Stability most important issue for motorcycles - Problems with disabling ABS How to specify deceleration build up ?

LAYOUT	PROPOSED CONTENT IN SUMMARISED FORM	
	$-\quad$For low to high surface transition, vehicle deceleration "must rise to the appropriate high value within a reasonable time"	NOTES + OUTSTANDING ACTIONS
4.10 Partial Failure	Only applicable to a "Split service brake system" - see FMVSS 122 S4. The remaining sub- system must meet the relevant performance requirement	Informal group to discuss performance measure based on stopping distance in FMVSS, S5.5.2.
		Requirements: Minimum deceleration $\left[\mathrm{MFDD}=3.3 \mathrm{~m} / \mathrm{s}^{2}\right.$ or

