Informal document No. **6** (54th GRRF, 6-8 October 2003, agenda item 3.)

PROPOSAL FOR DRAFT AMENDMENTS TO REGULATION No. 90 (Replacement brake linings)

Transmitted by the expert of the Federation of European Manufacturers of Friction Materials (FEMFM)

<u>Note</u>: The text reproduced below was prepared by the expert from FEMFM in order to strengthen some prescriptions of the Regulation. It completes the proposals appearing in document TRANS/WP.29/GRRF/2001/18.

A. PROPOSAL

Annex 3,

Paragraph 2.1.2.1., amend to read:

"2.1.2.1...make three brake applications with the initial speed $(v_{\rm\scriptscriptstyle I})$ and final speed $(v_{\rm\scriptscriptstyle F})$ as given in the table below:

Axle	Braking Interval		Evaluation Window		Remark
	VI	VF	v ₁	v ₂	
Front	70	25	60	30	
	110	45	100	50	
	145	55	135	65	if $v_{max} > 150$
Rear	50	20	40	25	
	70	25	60	30	
	100	40	90	45	if $v_{max} > 150$

All speeds in km/h

Calculate the mean fully development deceleration for the corresponding evaluation window between the speeds $v_1 \mbox{ and } v_2$ in the table above."

Paragraph 2.2.4.1., amend to read:

"2.2.4.1.,... make three brake applications with the initial rotational speed $(v_{\rm I})$ and final rotation speed $(v_{\rm F})$ corresponding to the vehicle linear speed as given in the table below:

Vehicle	Axle	Braking Interval		Evaluation Window		Remark
Category		VI	VF	V1	V ₂	
M1	front	80	30	70	35	
		125	50	115	60	
		165	60	150	65	if $v_{max} > 150$
M1	rear	85	30	75	35	
		125	50	115	60	
		165	40	150	65	if $v_{max} > 150$
M2	front	85	35	75	40	
		130	50	120	60	
		165	35	150	45	if $v_{max} > 150$
M2	rear	75	30	70	40	
		110	50	100	55	
		150	60	135	65	if $v_{max} > 150$
Nl	front	85	30	75	35	
		130	45	120	55	
		165	25	150	35	if $v_{max} > 150$
Nl	rear	80	35	70	40	
		115	45	105	50	
		160	65	145	75	if $v_{max} > 150$

All speeds in km/h

Calculate the mean fully development deceleration for the corresponding evaluation window between the speeds $v_1 \mbox{ and } v_2$ in the table above."

Annex 4,

Paragraph 1.2.2.2.1., amend to read:

"1.2.2.2.1....make three brake applications with the initial speed $(v_{\scriptscriptstyle \rm I})$ and final speed $(v_{\scriptscriptstyle \rm F})$ as given in the table below:

Braking	Interval	Evaluation	Window	Remark
VI	VF	v ₁	v ₂	
40	20	35	25	
60	35	55	40	
80	55	75	60	if $v_{max} > 90$

All speeds in km/h

Calculate the mean fully development deceleration for the corresponding evaluation window between the speeds $v_1 \mbox{ and } v_2$ in the table above."

Paragraph 2.2.3.1., amend to read

"2.2.3.1...make three brake applications with the initial rotational speed and final rotational speed corresponding to the vehicle linear speeds $v_{\rm I}$ and $v_{\rm F}$ as given in the table below:

Braking	Interval	Evaluation	Window	Remark
VI	VF	V1	V ₂	
55	30	50	35	
80	45	75	50	
110	75	105	80	if $v_{max} > 90$

All speeds in km/h

Calculate the mean fully development deceleration for the corresponding evaluation window between the given speeds v_1 and v_2 in the table above."

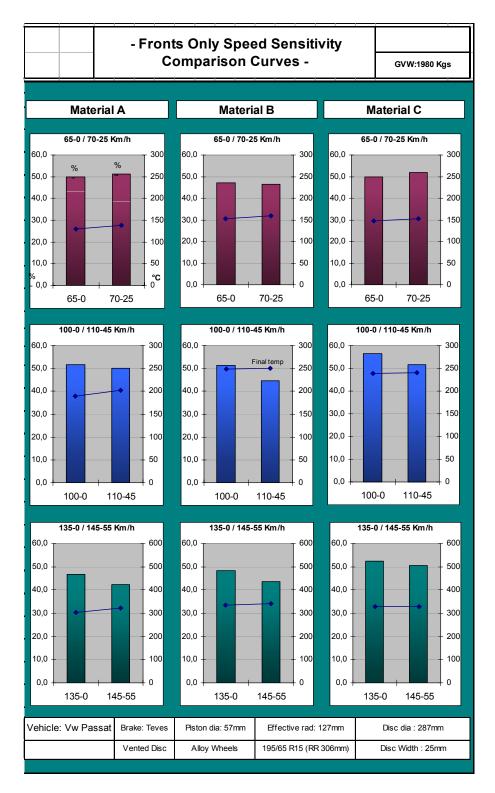
* * *

B. JUSTIFICATION

Document GFFR/2001/18 has explained in detail the reasons for the proposal to introduce "snub braking" instead of stop braking for the evaluation of the speed sensitivity. It has also pointed out that vehicle test and dynamometer test does not always correspond well regarding the absorbed energy. This means speed sensitivity test on the vehicle and dyno test are at present not fully comparable.

The proposals in GRRF/2001/18 tried to overcome these problems. However, during the discussion in the 50. GRRF some delegates felt that the proposal seemed to weaken existing requirements whereas the principle of snub braking was not argued.

A small adhoc working group came together in February 2002 and discussed the issues raised in GRRF. The proposal above is the result out of this discussion.


The main amendments to GRRF 2001/18 are the definition of the braking interval and the evaluation window. The braking interval is calculated such that the energy absorbed is equal to the existing requirements in Regulation 90, which is proven in the table below where the factor C shows the relation of the braking energies (C>1 means the braking energy in the stop braking is greater than in the snub braking). The evaluation window guarantees a repeatable and precise.

Axle	VI	V _F	v_{stop}	С	
front	70	25	65	0,99	
front	110	45	100	0,99	
front	145	55	135	1,01	
rear	50	22	45	0,96	
rear	70	25	65	0,99	
rear	100	40	90	0,96	

In the table below the factor F as defined in GRRF 2001/18 is calculated for all test conditions for speed sensitivity in annex 3 and 4. The values are all close to 1 proving that vehicle test and dyno test are comparable for the new requirements.

Vehicle							
Category	Axle	Vehicle Test		Dyno Test		ma/M	F
		Brake Application		Brake Appl	ication		
		Vı	V _F	Vı	V _F		
M1	front	70	25	80	30	0,77	1,009
М1	front	110	45	125	50	0,77	0,997
M1	front	145	55	165	60	0,77	0,989
M1	rear	50	20	85	30	0,32	1,038
M1	rear	70	25	125	50	0,32	1,018
М1	rear	100	40	165	40	0,32	1,024
М2	front	70	25	85	35	0,69	1,033
М2	front	110	45	130	50	0,69	1,014
М2	front	145	55	165	35	0,69	1,003
М2	rear	50	20	75	30	0,44	1,010
М2	rear	70	25	110	50	0,44	1,012
М2	rear	100	40	150	60	0,44	1,010
N1	front	70	25	85	30	0,66	1,024
N1	front	110	45	130	45	0,66	1,026
N1	front	145	55	165	25	0,66	1,025
N1	rear	50	20	80	35	0,39	1,041
N1	rear	70	25	115	45	0,39	0,979
N1	rear	100	40	160	65	0,39	1,008
M3,N2,N3	f+r	40	20	55	30	0,55	1,027
M3,N2,N3	f+r	60	35	80	45	0,55	0,987
M3,N2,N3	f+r	80	55	110	75	0,55	0,948

A vehicle test has been carried out in order to compare the existing with the new requirement using three different materials (Material A is the OE material). In the graphs below the bars show the performance achieved comparing stop and snub braking. The dots linked with a straight line show the maximum disk temperature achieved in the tests. Regarding the speed sensitivity of the three materials both stop and snub braking come to a similar result. The temperatures show that in this case the snub braking is a little more severe, however, the difference is very small.

