Ε

Economic and Social Council

Distr. RESTRICTED

TRANS/WP.29/GRRF/2003/14 9 May 2003

Original: ENGLISH ENGLISH AND FRENCH ONLY

ECONOMIC COMMISSION FOR EUROPE

INLAND TRANSPORT COMMITTEE

World Forum for Harmonization of Vehicle Regulations (WP.29)

Working Party on Brakes and Running Gear (GRRF) (Fifty-fourth session, 6-8 October 2003, agenda item 4.)

> PROPOSAL FOR DRAFT AMENDMENTS TO REGULATION No. 111 (Handling and stability of vehicles)

Transmitted by the Expert from the Russian Federation

<u>Note</u>: The text reproduced below was prepared by the expert from the Russian Federation following the recommendation of GRRF at its fifty-third session. It is based on a document distributed without a symbol (informal document No. 19) during the fifty-third session (TRANS/WP.29/GRRF/53, para. 26). The proposals contained in informal document No. 19 have been divided into two parts. The first part, referring to specifications concerning tilt angle for the tilt-test, is reproduced below.

Note: This document is distributed to the Experts on Brakes and Running Gear only.

Insert new paragraphs 2.7. and 2.7.1., to read:

"2.7.	" <u>Rollover threshold</u> " means the instant when all the wheels of one side of a vehicle have lost contact with the supporting surface (tilt table platform).
2.7.1.	The inclination angle of the tilt table surface is represented by the symbol " β "."
Paragraph 5.	3.1.1., amend to read:
	"a tilt table angle of $\beta_c = 23^\circ$ has been reached"
<u>Annex 1</u> ,	
<u>Item 3.2.</u> , am	end to read:
"3.2.	tank; make, model, effective volume:"
<u>Item 6.2.</u> , am	end to read:
"6.2.	mass of vehicle in running order:"
Insert a new	item 8.1., to read:
"8.1.	Centre of gravity height of the vehicle in running order:
Insert a new	item 11.5., to read:
"11.5.	Electronic Stability Programme (ESP) engaged: yes/not/not applicable 2/"
<u>Annex 3</u> ,	
<u>Paragraph 7.</u>	, amend to read:
"7	TEST PROCEDURE
7.1.	This procedure consists
	of stick-slip and hysteresis."

Insert a new paragraph 7.2., to read:

"7.2. If, during testing of a vehicle, which tank in case of full load (with respect to its mass) is not filled completely (with respect to its volume), the tilt table inclination angle β is less than value of β_c or/and roll angle ϕ when $\beta = \beta_c$) is more than value of ϕ_c , the test shall be repeated with the fully filled (with respect to its volume) tank.

The values of the recorded at the test tilt table inclination angle β_w and roll angle ϕ_w (when $\beta_p = \beta_c$) shall be corrected by using the following formulas:

$$\tan \beta_p = \tan \beta_w \cdot \frac{A_T \cdot H_w}{A_w \cdot H_g} + \frac{T_T}{2 H_g} \left(1 - \frac{A_T}{A_w} \right)$$
$$\varphi_p = \varphi_w \cdot \frac{A_T}{A_w} \cdot \frac{H_g}{H_w}$$

The value of β_p shall be higher, and the value of ϕ_w shall be lower than the corresponding critical values ($\beta_p \ge \beta_c \ \phi_p \le \phi_c$). [Note by the secretariat: The text and the formulas are contradictory]

In the formulas:

$$A_{\rm T}$$
 = vehicle mass in case of loading by normal fluid

 A_w = vehicle mass in case of loading by water.

$$A_w = A_T + V_l \cdot \left(\rho_w - \rho_T\right)$$

H_g, H_w = height of the vehicle centre of gravity in case of loading by normal fluid and water, respectively;

$$H_w = H_g - V_l \cdot \left(\rho_w - \rho_T\right) / C_{ST}$$

- T_T = theoretical wheel track at the vehicle cross section at the centre-of-gravity point;
- Vt = effective tank volume;

$$C_{ST} = \frac{A_g}{H_g - H_l}$$

- C_{ST} = vertical stiffness of suspension at the centre of gravity point;
- $A_g = mass of payload;$
- $\rho_{\rm T}$ = density of normal fluid;
- $\rho_{\rm W}$ = density of water;
- H_1 = height of the centre of gravity of the vehicle in running order."

Annex 4,

Paragraph 7.2., amend to read:

"7.2. In case of semi-trailers separated from tractors, kingpin effects are calculated by using the following formula:

Kingpin trace width:

$$T_K = \frac{\sum_{i=1}^n T_i}{n}$$

The kingpin roll stiffness, which is the roll stiffness of the tractor at the longitudinal position of the fifth wheel/kingpin, will be calculated by using a reference load dependent roll stiffness factor of 4 [m/rad]: $C_{DRESK} = A_K \cdot 4$ "