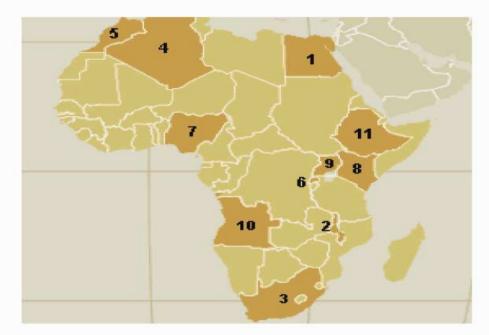


Potato production and its improvements, achievements and constraints

Ramzy El-Bedewy

Agriculture Research Center, ARC-Egypt International Potato Center (CIP) March 2009

World potato production, 1997-2007


	1997	1999	2001	2003	2005	2007	
Countries		Million tones					
Developed	174	165	166	160	159	159	
Developing	129	136	146	153	160	166	
WORLD	303	301	312	313	319	325	

Top ten Potato producers, 2007				
Countries	Quantity (millions)			
-China	72			
-Russian Fed.	36			
_India	26			
United States	20			
-Ukraine	19			
_Poland	11			
-Germany	11			
Belarus	8			
=Netherlands	7			
France	6			
Source: FAOSTA	<u>T</u>			

Top potato consumers, 2005

Countries	Quantity (million t)		Kg per capita
China	47	Belarus	181
Russian Fed.	18	Kyrgyzstan	143
= India	17	Ukraine	136
United States	17	Russian Fed.	131
-Ukraine	6	_Poland	131
₩UK	6	Rwanda	125
-Germany	5	Lithuania	116
Poland	5	_ Latvia	114
Bangladesh	4	Kazakhstan	103
≖ Iran	3	₩UK	102
	Source: FA	OSTAT	

Africa

Top producers, 2007

1 Egypt	2 Malawi	3 South Africa	4 Algeria
5 Morocco	6 Rwanda	7 Nigeria	8 Kenya
9 Uganda	10 Angola	11 Ethiopia	

Production, 2007

Harvested	area	1	541	000	ha

Quantity	16 000 000 t
----------	--------------

Yield 10.8 t/ha

Source: FAOSTAT

Objectives

- In Africa, there is a big gap between the supply and demand of good quality potato seed.
- An urgent need of production of significant quantities of good quality seed.
- Clean seed has to be produced from LB resistant varieties in absence of BW, be free from viruses, and in proper physiological condition using proper cultural practices

Constraints to Potato Production in Africa (SSA, CA and WA)

- Lack of access to clean seeds, high cost
- Lack of quality control (certified seed)
- Low yields (5-8 t/ha), low multiplication rate 1:5
- Lack of access to inputs
- Poor infrastructure, lack of good storage
- Pests
- Private seed companies shy away

What are the most important pests that affect seed quality in Africa?

Late Blight (LB)

- Most important potato constraint world wide.
- Yield losses of approximately \$ 2.8 Billion annually.
- \$ 850 million spent annually for fungicide application.

Available sources of LB host plant resistance

Population A

Population B

Vertical Few R-genes High infection rate Easily overcome

Horizontal Many minor genes Low infection rate Difficult to overcome

LB resistant germplasm can be introduced from CIP in various forms

True potato seed (TPS) Tuber families In-vitro plant-lets Varieties/clones

Wide Variability on CIP Potato Germplasm

Blight Resistant Varieties in SSA, CA and WA

- European Varieties have good yield and quality, never bred for resistance, depend on spray– most var. introduced in '80s gone.
- CIP-germplasm are mostly the source of LB resistance (more than 35 CIP clones have been released by various NARS over the past 25 years, ten of them released recently).
- 45 advanced CIP-clones of "Population B" have been already developed. (the selection of promising clones with acceptable yield and agronomic characteristics under different agroecological zones is still going on by different African NARS).

Bacterial Wilt

Major constraints to potato production in most developing countries:

- Clean seed, soil free of *R.S.*, cultural practices & sanitation are still the most effective control measures.
- So far no resistant varieties/clones have been found.
- Selection possibility for low susceptibility.

Potato Viruses

- PLRV and mosaic diseases
- Crop losses from 10 to more than 60%
- Suitable growing period
- Healthy seed, aphid control
- Rouging of diseased plants, haulm killing, early harvest and Resistance/tolerant varieties & clones

Crop losses from 10 to more than 60%

Control:

- Use of healthy clean seed.
- Cultural practices, irrigation, ridging, suitable planting and harvesting date.
- Use of safe biological control measures Bt+ & G.V.
- Use of GMO??

Collaborators in potato seed & breeding activities

National Agricultural Research Institutions

Governmental, NGOs and Seed producers.

Universities, National and International institutions and seed Companies etc.

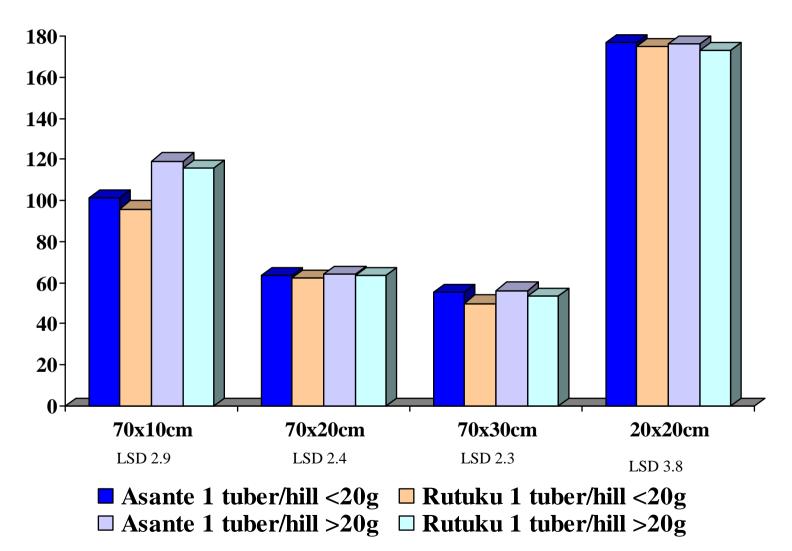
PRAPACE and SARRNET Networks

North Africa Network??

Performance of some selected clones of (Population A) at Loreto (2200m), SSA, long rains 2001 & 2002

Clone	2001		20	02	
	Yield (t/ha)	AUDPC	Yield (t/ha)	AUDPC	
390381.32	43.0	437	49.9	605	
KP90185.2	37.6	740	47.9	760	
390012.2	32.1	633	40.0	378	
KP90154.1	32.1	255	39.0	121	
390831.4	32.1	847	38.2	450	
KP90121.1	26.4	770	44.7	292	
Tigoni	31.9	936	37.2	324	
Desiree	29.1	2674.0	30.2	1258	
LSD _(0.05)	6.6	15	19.4	293	

Performance of some selected clones of (*Population B*) at Loreto (2200m), SSA, long rains 2001 & 2002


Clone	20	01	20	02	
	Yield (t/ha)	AUDPC	Yield (t/ha)	AUDPC	
392640.28	49.4	252	59.7	102	
392640.13	41.8	595	50.1	101	
392640.21	35.2	720	47.8	117	
391058.90	34.6	792	37.2	111	
391058.91	30.8	530	41.7	109	
Tigoni	23.4	1041	33.2	168	
Desiree	12.8	2674	20.8	258	
LSD _(0.05)	5.3	300	25.4	98	

Selected Top clones for French fries in SSA

Clone	DM %	Specific acceptability	Overall gravity
Danva	25.5	1.106	6.3
379055.1	23.3	1.066	5.4
387205.5	23.3	1.064	5.4
389746.2	22.0	1.081	5.0
386040.9	21.7	1.084	5.1

¹On scale of 1-9; scores of 5.0 and above are acceptable.

Relationship between planting density and tuber size on tuber number on varieties Asante and Rutuku in Kenya and Uganda, 2002-2003

Multiplication strategy

- CIP and NARIs producing the nuclear seed stock from in-vitro plant-lets in their TC Lab as well as producing foundation seed from stem cuttings and mini-tuber propagation in their screen houses and control nursery beds.
- NARIS, NGOs and seed growers producing prebasic and basic clean seed for further distribution.

Seed Source and distribution channels in SSA, CA & WA

- Formal: CIP/KARI, ARC in SSA and Governmental NARI stations (less than 1%).
- Regulated informal seed production in potato seed growers' fields and NGOs (less than 4%)
- Informal Seed: Neighbours, Markets etc (more than 95%)

TPS: A Technology for small scale farmers in Africa

Performance of seedlings tuber production/m² in nursery, Kenya, LR 2002 and 2003

Progeny	2002		2003	
	Yield (kg/m ²)	No. of Tubers	Yield (kg/m ²)	No. of Tubers
MF II x 13	6.4	263	7.5	375
Serrana x 67	6.1	335	8.4	427
TPS 7 x 67	5.8	328	6.6	370
Atzimba x 13	5.7	380	7.8	365
MF I x 67	4.9	235	7.9	335
LSD _{0.05}	1.9	NS	2.0	NS

Values shown are means of three replications. Yield data shown are from a spacing of 10 x 10 cm.

Potato production from seedlings tuber progenies in Kenya LR Season, 2002 and 2003

Progeny		2002		2003	
	Yield	AUDPC	Yield	AUDPC	
	(t/ha)	(LB)	(t/ha)	(LB)	
Achirana x 67	36.8	1020.3	44.7	124.3	
Serrana x 67	38.1	1177.8	44.5	112.5	
MF I x 13	39.4	1057.9	44.2	154.8	
MF II x 67	42.3	1259.8	43.2	113.6	
Tigoni	43.5	842.2	40.8	132.8	
K. Pink	32.5	2128.7	27.8	197.8	
LSD _{.05}	NS	284.5	14.8	NS	

Values shown are means of three replications of 20 hills. Planting date: 07.04 and 12.04 in 2002 and 2003; Harvesting date: 14.7. and 28.07 in 2002 and 2003

Future prospects and challenges 1

- Strengthen foundation, pre-basic and basic seed production by NARS.
- Improve facilities, massive production of nuclear seed using hydroponics system.
- Emphasise more on further mini-tubers multiplication in high planting density.
- Strengthen varieties deployment & seed diffusion by NARI, NGO and encourage Private Sector to collaborate on seed production.

(2)

- Reach a happy compromise between formal and regulated informal seed system
- More emphasis on Pests control (LB,BW, Virus,PTM)
- Establishment of antisera production and distribution centre in Egypt.
- Utilization of TPS
- Use of GMO (PTM, Viruses etc)??
- More emphasis on marketing and promotion of good quality seed.
- More emphasis in capacity building & training

