




Principles and Guidelines on Building Multilingual 
Applications for Official Statistics 

 
 
 
 
 

 

 

These Principles and Guidelines were produced by the Conference of 
European Statisticians Sharing Advisory Board and the UNECE 
Secretariat, with input and peer review from Participants in the 2011 joint 
UNECE / Eurostat / OECD meeting on Management of Statistical 
Information Systems (MSIS). This version was published in February 2012.

 

I. Introduction 

1. The move towards global standardisation in models such as the Generic 
Statistical Business Process Model (GSBPM) and the Generic Statistical Information 
Model (GSIM), combined with progress on the development of standards for 
exchanging data and metadata, has drawn the attention of statistical software 
providers to the possibilities of exchanging software internationally. This has 
prompted the question of how we can actively incorporate this possibility into the 
development of software from its inception.  

2. Statistical software is often developed in the national context; multi-lingual 
support can be an afterthought. Adding support for other languages later is often 
much more difficult if language is not considered as a key part of the software 
architecture from the start. 

3. However, there is more to building software that will be used in many 
countries than just focussing on language issues alone. Adhering to best practices in 
internationalising software means that the possibilities for sharing data within the 
statistical community are increased. The implementation of these guidelines will 
increase the portability and reuse of software. 
 
4. The purposes of these guidelines are to provide a review some of the 
common best practices to develop internationalised software, to highlight some of 
the resources and common standards in the area and to focus on topics that may 
specifically apply to statistical software such as the treatment of numbers, formatting, 
dates, formula treatment, and notation. 
 
 
II. Definitions  
 
Internationalisation and Localisation  
 
5. The process of developing software for use in multiple languages, cultures 
and countries can be viewed as two separate processes, those of internationalisation 
(I18N) and localisation (L10N). Internationalisation deals with the process of 
designing software so that it can accommodate changing environments without 
changes to the code. Localisation deals with the more specific case of designing for 
example for a country, language and or region. So while internationalisation 



concerns itself with providing the system to allow the use of more than one 
language, localisation would instead involve the application of this such as 
translation etc.  
 
Locales 
 
6. A locale is a collection of user preferences applicable to a specific language 
country and or culture. Locales identifiers usually consist of a language, often 
combined with a country and occasionally with a further parameter specifying the 
code set and modifier; for example en_GB is the locale identified for English for the 
UK.  This means a differentiation can be made between English (US) and English 
(UK). The locale consists of a number of elements including for example the name 
and ISO identifier of the language, the currency, sorting requirements, numeric 
preferences such as thousands separators , the calendars to be used and other 
elements such as text direction (left-to-right or right-to-left, horizontal or vertical) etc.1 
 
 
III. Principles  
 
Principle 1: Software should be multilingual by design 
 
7. Software should preferably be designed and tested to implement multilingual 
application rather than retrofitted. It is recommended that the requirement for 
software to facilitate the use of more than one language should be included in the 
initial software requirements. It is easier to implement internationalisation if it is 
incorporated from the beginning. When it is included in requirements, it is developed 
and tested throughout the development process. This will provide a higher quality 
product than if the language requirements are added on at the end of the process. 
 
8. Requirements specifications should include whether more than one language 
should be stored, presented and output at one time, for example in a bilingual 
country; this has an impact on how multilingual applications are implemented. 
 
 
Principle 2: Multilingual applications should support additional languages 
without reengineering 
 
9. Where an application has been designed to allow the use of more than one 
language, it should facilitate the introduction of new languages without having to be 
extensively rewritten.  The program should be designed where possible with the 
ability to adapt to add new languages. The storage of the user interface elements 
and application data should also facilitate this. Following the guidelines in this 
document will highlight some of the issues to be aware of. 
 
10. It is recommended to provide multi lingual systems if possible with one set of 
binaries, so that the code is consistent and to reduce the costs of installation, 
support etc. Only one version then needs to be maintained. This however, poses a 

                                                 
1 http://www.jbase.com/new/support/41docs/jBASE%20internationalization.pdf 

http://www.jbase.com/new/support/41docs/jBASE%20internationalization.pdf


challenge in that display elements need to be designed to accommodate varying 
languages and lengths. This may also increase the size of the application. 
 
11. Where this is possible it will reduce lag time in providing international versions 
and improves the quality of the product overall. 
 
 
Principle 3: The User Interface should always be separated from the code  
 
12. Separating the User interface (UI) from the code makes the rest of the 
application effectively language neutral, which has a number of benefits.  

• Addition of new languages or changes to the user interface does not require 
recompiling or reprogramming of the code.  

• Translators can work without needing knowledge of the code or logic of the 
program. 

  
13. One example of this separation would be using string variables rather than 
string constants within the code. The strings variables are then loaded based on the 
selected locale or language.  
 
 
Principle 4:  Identify and adapt all elements of the user interface 
 
14. When talking about the user interface we should keep in mind that this also 
includes not only the text used in the user interface. Languages changes can also 
affect the layout of the user interface, such as the buttons, the size of the application 
window etc. 
 
15. When designing the interface the designer needs to accommodate possible 
changes to the text lengths in the design of the forms. Word lengths vary between 
languages. This particularly affects labels, as the variability of text length in different 
languages is most pronounced in short phrases or text . As more words are included 
in sentences the difference tends to average out over the longer text. For example 
‘Click here’ (10 letters) translates to ‘Klicken Sie hier’ in German (16 letters). 
 
16. A guide to the amount of space required for translated text is reproduced 
below from Oracle’s “Understanding Application Development Guidelines” 
 
Number of English Characters Additional Space Required 
1 character  400 percent or 4 characters 
2—10 characters  101—200 percent 
11—20 characters  81—100 percent 
21—30 characters  61—80 percent 
31—70 characters  31—40 percent 
More than 70 characters  30 percent 

 
17. Room for expansion needs to be included in menus, labels and dialogs. All of 
these elements need to be re-tested after translation. It is recommended that you 
shouldn’t overcrowd text in forms and applications. This allows translated elements 



to display effectively. Relative sizing for elements such as label boxes, containers 
etc. should be used rather than fixed sizing where possible. 
 
18. Icons and graphics should also be recognised as part of the user interface; to 
allow translation of the interface you should restrict or avoid the use of embedded 
text in icons and graphics. Any text used should be drawn from string variables.  
 
19. The icons and graphics should undergo similar checking and translation as 
the string text to identify any possible misinterpretations. The interpretation of icons 
and graphics differs between cultures. Pointed fingers for example can be offensive 
in some cultures. Colours can have strong positive or negative connotations in 
different cultures. These elements should be used with sensitivity. 
 
20. Accelerator keys, menu shortcuts etc. are all elements of the user interface 
that also need to be adapted. Shortcuts should be adapted for different languages; 
this requires the storing of the shortcut keys as part of the user interface. Shortcut 
keys also need to be accessible from different keyboards. This requires checking 
keyboard layouts for different locales. 
 
21.  The entire user interface should at some stage of testing be reviewed in the 
translation work and made available to the localisation team.  
 
 
Principle 5: Plan the storage and management of multilingual user interface 
elements 
 
22. The user interface elements should be maintained in an accessible and 
trackable format. This can be in for example a resource file format, a database table 
etc. The storage should include metadata regarding the interface elements such as 
comments, context, IDs etc. This can be used to communicate with translators, for 
example where certain text is used, when it appears, what it conveys and also 
simplifies conversations between translators and developers for clarification.    
 
23. IDs allow the tracking of the translatable elements and also improve the 
possibility of their reuse between versions or separate applications. This allows the 
standardisation of the translations and can reduce translation costs if the same text 
can be reused. When working with XML for example it is recommended by the 
Internationalization Tag Set (ITS), that translatable text should be stored in elements 
rather than attributes to allow unique id’s, comments etc. 
 
24. The string elements required for different languages can differ in length and 
therefore size; ensure that storage elements can expand to accommodate strings in 
different languages. 2 
 
25. The order of messages can change between languages so that messages 
should be stored as complete sentences rather than reconstructed from keywords. 
Similarly avoid using ordinals with numbers, these are not always easy to translate. 
For example, instead of “The 1st record of the table is”, use “Record 1:” 

                                                 
2 See Guidelines 8 and 12 for further discussion on saving multilingual data  



 
26. Text that contains variable data can pose a problem. For example: “The table 
has 10,000 records” translates in Romanian to "Tabelul are 10.000 de înregistrări" 
with a change in the positioning variable between the beginning and end text. The 
sentence itself could be simplified for example to 10,000 records -> 10,000 
înregistrări. or by the use of placeholders in the text  "The table has {1} records", 
where {1} would be replaced by the value (10 000) during runtime. 
 
27. A default language should be specified in all cases so that, at a minimum, 
some message is displayed in the event of missing text or images. The user should 
have some notification that the element is missing in their requested language. The 
missing translation should be logged as a system error 
 
 
Principle 6:  Decide the best way to select the locale 
 
28. The standard locale implementation should attempt to select the most 
appropriate locale for the user initially. This could use the system or user default 
locale of the operating system, the characters detected in a document or a standard 
default option as appropriate. 
 
29. Users must then be given the opportunity to select and change their locale. 
For example a default language may be set by the country of the ip addresses but 
most international websites recognise that a user may prefer a different language 
and allow the default to be changed. 
 
30. Remember the locale selected and continue to use it during the session. 
Where a user can be identified, save the preferred locale and use the same 
preference in future. With a website for example, cookies can be used to default the 
preferred language in future sessions.  
 
31. Ideally a user should be able to change locales at any stage during run time 
so that the application does not need to be restarted to change locales. However 
changing locales after start-up may mean additional server loads (querying more 
than once) and this should be taken into account when specifying. 
  
32. If locale change is allowed at a later stage then existing data should be 
retained or if not possible, a warning of data loss must be given. The opportunity to 
cancel the locale change before refreshing the entered data should be allowed.  
Ideally the page status should be maintained on locale updates; 
 Language selection options should use their native names for example, English, 
French or their ISO abbreviations, en, fr, de etc. Do not use national flags to identify 
languages. 
 
33. Users should be able to select their own input method, such as the keyboard 
layout, to allow them to enter characters using the key combinations that they are 
used to. 
 
 



Principle 7: Presentation of data should follow the customs of the locale 
 
34. Presentation of data differs between locales. Some of most common areas 
where differences occur are detailed below. Development of software should be 
aware of and take into account possible differences. Care should be taken that the 
application does not rely on how things are presented. For example: refusing to 
accept Zip code formats of different locales. To handle differences in presentation 
the appropriate format as defined by the locale should be applied. Where multiple 
formats are available users preferences should be saved. Outputs should be able to 
display the required character sets. 
 
Examples of Locale differences in presentation formats 
 

• Numbers:  
o Number formats such as the position of decimal separators etc differ 
o Ordinality differs between languages e.g. 1st etc 
o billion vs. trillion in the long and short scale of numbers 
o How many significant digits should be displayed 

• Dates: Different format types, different calendars used, different working days, 
• Measuring Units:  

o Imperial vs. metric 
o Currencies e.g. symbols , placement of currency identifier 

• Text Input and Layout: Text can be displayed in different directions e.g.  right 
to left  

• Date/Time Formatting  
o Calendars Gregorian, Thai etc.  
o Time Zones  
o Working days, e.g. Start of the week 
o Formats e.g. US. MM/DD/YY  

• Paper size: 
o US paper size differs from European paper sizes. 
o Output should not be limited to a ‘standard’ paper sizes 

• Name formats, titles used e.g. Mr, Mme; layout of names, forename first or 
last name. 

• Legal requirements 
o Determine whether locale specific trademarks, logos or branding are 

used and find out whether they can or should be used in other locales 
o Conforms with regulations 

• Address & telephone formats This is  of relevance for many statistical 
applications, special attention should be paid to 

o The ability to enter addresses in languages as desired.  
o Ordering of address fields e.g. Street name first etc. 
o The availability and format of postcodes. 
o Country names: Locales will supply the lists of countries should be 

used for countries and geographical areas 
 
 



Principle 8: Processing and saving of data should follow the customs of the 
locale 
 
35. Processing the data within your software should take account of the possible 
differences between locales. In order to do that it should be noted that the following 
functions that may be used in processing can differ between locales 
  

• Rounding  
o Differences exist for example  

 How many significant digits should be used? e.g. currency 
rounding 

 Where data are not compared between locales, use the locale 
defined rounding 

 If data are compared then standard rounding should be used. 
• Strings 3 

o Input and saving 
 Can all characters be input and saved?  
 Are different keyboard layouts facilitated?  
 Are you relying on single characters for separate keystrokes that 

may not be available on all keyboards? 
o String comparison:  

 The search and sort order used should be that of the current 
user preferences. 

 You should use locale dependent string sorting functions where 
available when comparing locale dependent text (such as 
lstrcomp). Standard String comparison functions may not take 
account of localised sort orders. 

 Searching and other string functions should be by character and 
not by byte size due to variable character byte sizes. 

 Where text is not locale dependent use non locale dependent 
string functions   

o String manipulation 
 Line breaks, spacing etc differ, don’t rely on a standard break in 

your processing.  
o String sorting 

 Sorts differ between different cultures and alphabets. 
 There may be more than one sort order available, e.g. German 

phone book order. 
 Unicode sort order does not match linguistic sort order or 

expected binary sort ordering. Do not rely on a assumed sort 
order. 

 Decide whether searches over data in multiple languages 
should be allowed. 

• This may be required in multilingual countries such as 
Switzerland 

• A dominant search order should be defined. 
 How should accented characters be handled in searches? 

                                                 
3 See references section: ‘Strings’ for links to more detailed string discussions 



 Be aware of possible differences with database sort orders and 
the collations used  

o Currencies 
 Store the currency amount along with currency identifiers. 
 Should multiple currencies be able to be stored?  

o Measurement units 
 Store the measurement unit along with the measurement. 

 
36. Most importantly watch out for hidden assumptions about how things work.  
 
 
Principle 9: Reuse standards such as program libraries for localisation 
 
37. Standard locales should be used in preference to defining customised 
settings. Standard locale information can be accessed through many development 
libraries and resources. The Unicode Common Locale Data Repository is an 
example of a comprehensive library of downloadable locale information (see 
references for further details). 
 
38. Most development software has localisation routines available for you to 
access locale information; for example setlocale in Microsoft Visual studio; 
International Components for Unicode (ICU) for java and C++ development.  
 
 
Principle 10: Include estimates for provision of multilingual support in 
estimates of development costs 
 
39. It will take more time to develop and test multilingual software. If translations 
are being included with the software then allow for the translation time in the 
software development plans. Include the translation effort not only of the text but also 
checking of the user interface. As before ,check that text strings are displaying 
correctly, are they being cut off, are the icons and graphics acceptable? 
 
 
Principle 11: Include documentation as part of localisation efforts 
 
40. User documentation should be available in the language of the locale. This 
should be thought of as part of the user interface. This translation can be included in 
the localisation effort. As a minimum, user manuals should translated, administrator 
files should be included if possible. 
 
41. In addition other textual objects such as help files should be included in the 
localisation efforts along with system messages. 
 
 
Principle 12: Understand Unicode and use it where possible 
 
42. Internally characters are saved and stored on computers as binary numbers, 
the mapping of these numbers to their character values is known as a character set. 
ASCII is one of the original standard character sets. Initially characters were stored 

http://msdn.microsoft.com/en-US/library/x99tb11d%28v=VS.80%29.aspx


in 7 bits of memory and were intended to represent the standard Latin alphabet, 
numbers along with punctuation. With 27=128 available mappings. 
 
43. In this way the character ‘a’ could be represented as below 
 

Binary Ascii code Character 
110 0001 97 a 

 
44. To represent the standard English language character set codes were defined 
for a set from 1 to 127. Codes below 32 used for system processes, ASCII codes 
between 32 and 127 were reserved for the traditional Latin character set of 94 
printable characters along with a space character. 
  
45. The introduction of 8 bits for storage of characters meant that up to 255 
different characters could then be stored, including the original code mappings this 
meant that the codes of 128 to 255 were ‘free’. This allowed an extension of the 
character set to include accented characters or other mappings as required. Codes 
above 128 were then implemented in different ways in different countries. This 
freedom meant that text sent using the ASCII character set could have different 
representations in different locales, with the same binary code assigned to multiple 
characters. Code sets were developed to define and communicate how the ASCII 
values above 128 were used e.g. ISO Latin 5 (’Turkish’). However 8 bits and 255 
characters were still insufficient for some languages such as Chinese, Japanese, 
Korean etc. 
 
46. Unicode and ISO 10646 (also known as UCS for Universal Character Set) 
were developed as an international standard to allow consistent representation and 
treatment of all characters. Each character has a defined number or ‘code point’, for 
example a code of U+0021 refers to the character exclamation mark  ‘!’. Unicode can 
currently facilitate over 1 million characters with over 100,000 assigned in the current 
version. The first 128 characters are compatible with the ASCII character set. 
 
47. The introduction and adoption of Unicode allowed the separation of the coding 
of characters from their storage. The code points could be stored using different 
encoding systems.  
 
48. The most common encoding systems include UTF-8, UTF-16, and UTF-32. In 
deciding which encoding system to use it is essential to consider limitations imposed 
by memory, storage and the need for backward compatibility. A brief overview of the 
is provided with further information on comparisons between them available on 
Wikipedia at http://en.wikipedia.org/wiki/Comparison_of_Unicode_encodings 
 
49. In UTF-8, every code point from 0-127 is stored as 1 byte. Code points with a 
value of 128 and above are stored using up to 6 bytes. This means that for the first 
128 characters the ASCII character set maps to the UTF-8. The first byte in a 
multibyte character indicates how many bytes are used for the character. This is the 
default used for XML.  
 
50. UTF-16 encoding is the standard used for windows. It uses two bytes per 
character as standard. Most UNICODE characters are encoded by their 



codepoints.UTF-16 is popular in areas using DCBS (double character byte size) 
such as China, Japan. UTF-16 is used by Java and Windows. 
 
51. UTF-32 uses four bytes per character. 
 
52. Unicode also allows the use of older encoding systems; where a code does 
not exist in the old encoding system a default missing value is displayed; this 
eliminates the problem of characters being swapped in different coding systems. At a 
minimum however, in order to represent text correctly the encoding text must be 
specified.  
 
Using Unicode: 
 
53. To use UNICODE in your applications: 
  

• Use compatible code sets and communicate this code set. You should be 
able to read data generated in different code sets and process the data 
correctly; For example: 

o In emails the encoding system should be given in the header as for 
example Content-Type: text/plain; charset="UTF-8" 

o With HTML pages the encoding should always be given in the Meta tag 
in the head <head> <meta http-equiv="Content-Type" 
content="text/html; charset=UTF-8" /> Since December 2007 UTF-8 
has overtaken ASCII and other code sets to become the most 
commonly used encoding on web pages. 

• Use Unicode compatible data types and functions where possible  
 
Saving data in Unicode format: 
 
54. Data should be stored in Unicode data types; for example in SQL server uses 
nchar, nvarchar, and nvarchar(max); instead of their non-Unicode equivalents, char, 
varchar, and text. These storage type and functions are able to allow wider 
characters. Data should be saved or converted as appropriate in a Unicode format. 
 
55. Care should be taken when data stored in non Unicode data types is 
converted to Unicode data types as this could cause issues with missing data, this 
should be flagged as an error when it is detected. 
 
56. Use Unicode compatible functions where available. 
 
57. There can be some performance cost and differences with Unicode string 
functions, these should not be prohibitive but for intensive text operations it may 
require optimisation4. 
 
 

                                                 
4 http://support.microsoft.com/kb/322112  Comparing SQL collations to Windows collations 
Because the comparison rules for non-Unicode and Unicode data are different, when you use a SQL 
collation you might see different results for comparisons of the same characters, depending on the 
underlying data type. 

http://support.microsoft.com/kb/322112


Principle 13: Consider what fonts to use and how to use them 
 
58. There are a limited set of Unicode fonts which aim to represent most if not all 
of the Unicode character set, these include Arial Unicode MS. Generally, it is 
recommended to use the most appropriate fonts for the locale and language in 
preference to UNICODE fonts. A font should ideally be chosen that also supports a 
broad range of accented characters while satisfying design considerations.  
Simple fonts should be preferred to a script or calligraphic type font. 
 
59. Some options for selecting fonts are  

• Using logical font names: e.g. sans serif   
• Defining the font by name 
• Using true type fonts 
• Bundling fonts with your application. 

 
60. A fallback font should be defined. 
 
61. Formatting elements differ between languages, for example bold is commonly 
used for emphasis in many scripts but for example in Kanji and other scripts it may 
cause problems with legibility. Other emphasis techniques such as underlining may 
be used instead.  
 
 
IV. Conclusion 
 
62. The importance of providing software that can be used in more than one 
language or culture has increased. The last decade the growth of the internet has 
fuelled the sharing of software. To gain from future developments within the 
statistical community software should be developed with an expectation that it will be 
used in more than one environment. 
 
63. This document has outlined some of the main recommendations for 
developing software that can be adapted to multilingual use. It is not intended to 
provide an exhaustive list of issues that may be encountered. It will provide 
grounding in common problems encountered and an awareness of how to avoid or 
counter them. 
 
64. The guidelines above have been drawn from a review of documentation of 
both practical examples of internationalising software and research. It is recognised 
that implementing each guideline in every application may not be feasible but they 
are intended to provide an overview of best practice to work towards. 
 
 



V. Resources 
 
Guides: 
 
• IBM have also published a comprehensive guide to developing international 

software that provides an in-depth review of issues involved in developing 
software for multi-culture use available at http://www-
01.ibm.com/software/globalization/guidelines/ 

• Globalization Step-by-Step: http://msdn.microsoft.com/en-us/goglobal/bb688121  
• Get World-Ready  Microsoft: http://msdn.microsoft.com/en-

us/goglobal/bb895995.aspx 
• Wikipedia: http://en.wikipedia.org/wiki/Internationalization_and_localization 
• jBASE Internationalization  Publication detailing internationalisation efforts for 

Jbase software 
http://www.jbase.com/new/support/41docs/jBASE%20internationalization.pdf 

• Best practices for XML localisation: http://www.w3.org/TR/xml-i18n-bp/ 
• UTF-8 and Unicode FAQ for Unix/Linux: 

http://www.cl.cam.ac.uk/~mgk25/unicode.html  
• The Absolute Minimum Every Software Developer Absolutely, Positively Must 

Know About Unicode and Character Sets : An easy to understand guide to 
Unicode for programmers http://www.joelonsoftware.com/articles/Unicode.html 

• Description of basic concepts for internationalization, how to write 
internationalized software, and how to modify and internationalize software: 
http://www.debian.org/doc/manuals/intro-i18n/ 

• Key challenges in Software internationalisation 
http://www.acs.org.au/documents/public/crpit/CRPITV32Hogan.pdf 

 
Strings:  
 
• Microsoft Sorting and String Comparison:  http://msdn.microsoft.com/en-

us/goglobal/bb688122 
• Oracle guide: Linguistic Sorting and String Searching 

http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch5lingsort.ht
m#NLSPG005  

 
Checklists: 
 
• Microsoft Win32 Internationalization Checklist 

http://msdn.microsoft.com/en-us/library/cc194756.aspx  
• Oracle Checklist for localisation of software 

http://developers.sun.com/dev/gadc/i18ntesting/checklists/allquestions/allquestio
ns.html  

• Guidelines, Checklists, and Resources http://www.i18nguy.com/guidelines.html 
 
Common libraries and software resources: 
 
• CLDR: Unicode Common Locale Data Repository: The Unicode CLDR provides a 

standardised repository of locale data in xml format. http://cldr.unicode.org/  

http://www-01.ibm.com/software/globalization/guidelines/
http://www-01.ibm.com/software/globalization/guidelines/
http://msdn.microsoft.com/en-us/goglobal/bb688121
http://msdn.microsoft.com/en-us/goglobal/bb895995.aspx
http://msdn.microsoft.com/en-us/goglobal/bb895995.aspx
http://en.wikipedia.org/wiki/Internationalization_and_localization
http://www.jbase.com/new/support/41docs/jBASE%20internationalization.pdf
http://www.w3.org/TR/xml-i18n-bp/
http://www.cl.cam.ac.uk/%7Emgk25/unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.debian.org/doc/manuals/intro-i18n/
http://www.acs.org.au/documents/public/crpit/CRPITV32Hogan.pdf
http://msdn.microsoft.com/en-us/goglobal/bb688122
http://msdn.microsoft.com/en-us/goglobal/bb688122
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch5lingsort.htm#NLSPG005
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch5lingsort.htm#NLSPG005
http://msdn.microsoft.com/en-us/library/cc194756.aspx
http://developers.sun.com/dev/gadc/i18ntesting/checklists/allquestions/allquestions.html
http://developers.sun.com/dev/gadc/i18ntesting/checklists/allquestions/allquestions.html
http://www.i18nguy.com/guidelines.html
http://cldr.unicode.org/


• GNU C Library: The GNU C Library, commonly known as glibc, is the C standard 
library released by the GNU Project; http://www.gnu.org/software/libc/ For 
example 7.6 Accessing Locale Information: 
http://www.gnu.org/s/libc/manual/html_node/Locale-Information.html 

• The Java platform :java.util.Locale 
http://java.sun.com/developer/technicalArticles/J2SE/locale/ 

• ICU: “a mature, widely used set of C/C++ and Java libraries providing Unicode 
and Globalization support for software applications” http://userguide.icu-
project.org/i18n 

 
Standards: 
 
• Unicode: The Unicode Consortium is a non-profit organization devoted to 

developing, maintaining, and promoting software internationalization standards 
and data, particularly the Unicode Standard, which specifies the representation of 
text in all modern software products and standards; http://www.unicode.org 

• The current published Unicode standard is version 6 which contains 109,000 
characters http://www.unicode.org/versions/Unicode6.0.0/ch01.pdf 

• Internationalization Core Working Group Home Page: Provides 
internationalization advice to other groups developing Web standards 
http://www.w3.org/International/core/ 

• Wikipedia article on ASCII: http://en.wikipedia.org/wiki/ASCII 
• Wikipedia article on UNICODE:  http://en.wikipedia.org/wiki/Unicode  
 
Guides by national authorities 
 
• BILINGUAL SOFTWARE GUIDELINES AND STANDARDS- Welsh Language 

Board http://www.byig-wlb.org.uk/english/publications/publications/3963.pdf 
• Building bilingual applications at StatCan (Karen Doherty, Statistics Canada) 

http://www1.unece.org/stat/platform/download/attachments/22478904/issue+4.pd
f?version=1 

 
Examples: 
 
• Lessons Learned From Internationalizing a Web Site Accessibility Evaluator 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2698&rep=rep1&typ
e=pdf  

http://www.gnu.org/software/libc/
http://www.gnu.org/s/libc/manual/html_node/Locale-Information.html
http://java.sun.com/developer/technicalArticles/J2SE/locale/
http://userguide.icu-project.org/i18n
http://userguide.icu-project.org/i18n
http://www.unicode.org/consortium/unicode-bylaws.html
http://www.unicode.org/
http://www.unicode.org/versions/Unicode6.0.0/ch01.pdf
http://www.w3.org/International/core/
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://www.byig-wlb.org.uk/english/publications/publications/3963.pdf
http://www1.unece.org/stat/platform/download/attachments/22478904/issue+4.pdf?version=1
http://www1.unece.org/stat/platform/download/attachments/22478904/issue+4.pdf?version=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2698&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2698&rep=rep1&type=pdf


 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNECE,  Geneva,  2012 
 
 
 
The UNECE Statistical Division grants permission to download, copy and redistribute this publication 
for your own personal needs or the needs of your employer, but on a strictly non-commercial basis 
only. If any part of this publication is quoted, the UNECE must be acknowledged as the source. 
Commercial re-distribution of this publication, or any part of it, is only permitted under special 
authorisation. To apply for such an authorisation, or for any further enquiries, please contact the 
UNECE Statistical Division (support.stat@unece.org). 

mailto:support.stat@unece.org

